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Abstract

The dispersion spectrum is found for axially symmetric torsional waves

in an elastic, bimetallic rod with cylindrical core and concentric outer

casing. Plotting of the various branches of the spectrum is simplified by

the presence of discrete invariant points which are independent of the

material properties, and through which the spectral lines must pass. The

slope and curvature of the spectral lines at cut-off frequencies, the

asymptotic approximations at high frequency, the non-existence of complex

branches, the problem of co-existence and the concept of energy flow are

also studied

Introduction

The problem of wave propagation in a piecewise, homogeneous elastic

solid is of interest in a number of physical areas, e.g., [1,2,3]. This

study concentrates on a geometrically simple problem, which contains many

aspects of more general problems but has not been fully explored in the

literature. In particular, the dispersion equation is obtained and analyzed

for axially symmetric torsional waves in a bimetallic circular cylinder

with solid cylindrical core perfectly bonded to a cylindrical casing of a

different elastic material.

Earlier investigations in this area are due to Armenakas [4], Reuter

[5], and Haines and Lee [6]. Using Pochhaaer's equation for torsional

waves in elastic cylinders [7], Armenakas presented numerical results for

a few typical choices of material and geometric parameters for real wave

numbers only. Reuter carried out an asymptotic analysis for the low

frequency long wave length region and determined the expression for the
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phase velocity of the lowest torsional mode. Raines and Lee reinvestiga-

ted the problem and numerically demonstrated the properties of the dis-

persion spectrum for a general composite cylinder for both real and

imaginary wave numbers. They also formally pointed out the absence of

complex segments of the dispersion spectrum and rederived the low fre-

quency long wave length approximation for the lowest torsional mode.

The present study amplifies and further extends the research carried

out by these earlier investigators in this problem area. In addition to

a solution for the actual frequency equation, obtained by numerical solu-

tion of transcendental eigenvalue equation, a number of other significant

results have been obtained. First, it is shown that the eigenvalue

equation is separable in the Bernoulli sense so that it may be written as

the sum of two analytic functions, one of which is a function of the radial

casing wave number and the other is a function of the radial core wave

number. The separation constant Q , represents the elastic coupling at

the bonded interface between the core and casing and therefore can be

incorporated in the interface continuity equations. The solutions to the

eigenvalue problem is thus an analytic function of the Lie-parameter Q .

In particular, the lower limiting value Q - 0+ corresponds to a traction-

free boundary eigenvalue problem and the upper limiting value Q +

corresponds to a displacement-free boundary eigenvalue problem. The

problem of perfect bonding at the interface is therefore an intermediate

elgenvalue problem. It therefore follows from Weyl-Courant minimax theorem

in the theory of self-adjoint differential operators that the Rayleigh

quotient is a continuously increasing function of the Lie-parameter Q

and therefore the eigenvalues of the intermediate problem are nested by

the elanvalues of the two limiting cases, that is, 'Q-O < W < OQf..
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The dispersion equations for these limiting cASeS takP On A verV Silnrl

form and can be easily plotted and Lhererure terve as bounds on the dis-

persion spectrum of the intermediate problem, as required by the minimax

theorem.

To qualitatively sketch the dispersion spectrum, we have also deter-

mined analytically the cut-off frequencies, their slope, and their curvature

at long wave length. We have also shown that except for the lowest

torsional mode, coincidence of frequencies at cut-off does not exist and

therefore, in general, all branches except the lowest, have zero slope at

infinite wave length. The lowest torsional mode is, however, an exception

because at cut-off, zero frequency is a non-simple double root of the

eigenvalue equation and two linearly independent eigenfunctions can

co-exist at this frequency, giving rise to coincidence phenomena, and non-

zero slope. We have further shown that in the long wave length region, the

curvature of the branch is greater (less) than c2/W when Vi/,2 s

greater (less) than . Thus for a typical set of material parameters,

all branches of the spectrum except the lowest, have similar geometric pro-

perties in the neighborhood of cut-off frequencies. To obviate elaborate

computations in the high frequency region we have also obtained McMahon-

asymptotic representations of the various frequency equations which enter

in the discussion. We finally conclude this study with a brief discussion

of group velocity and flow of energy flux in bimetallic cylinder.

4I
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Basic Equations

For torsional waves in a homogeneous, isotropic, elastic medium

the displacement equation of motion in an open domain R is given by

i8_ a i a2u 1 a2ur (r r)U - u + - , c2  0

where c2 . v/p is the square of wave-speed of the shear waves in an

infinite, homogeneous, isotropic elastic medium with rigidity modulus

U and mass density p . The tangential displacement component is

u S u8 (r,z;t), where r is the radial direction, z the longitudinal

direction and t is the time parameter, e.g., [7]. Equation (1) is

a two-dimensional wave equation and admits plane waves propagating in

the longitudinal z-direction. Assuming solutions of the form

u(r,z;t) - V(r) exp i(Ez-wt), (i - (2)

we find that V(r) must satisfy the equation

r d d 1-r -d )  - V + K2 -K 2 < (3)

where

2 _(/C)2 E2, (4)

is the square of radial *ave number, E is the wave number in the

longitudinal direction, to is the angular frequency with real period



2w/w and frequency w/2w . The radial function V(r) is the solution

of Bessel equation of order one when K 0 0 , and in the limiting

case when K - 0 , the Bessel equation reduces to an Euler equation.

In order to accomodate the limiting case when the radial wave number

approaches the value zero, we take the general solution of Eq. (1) in

the form

u8 . [A J (Kr) - 1 KBYi(Kr) exp i(tz-wt) , (5)

where A and B are suitable coefficients to be determined from the

boundary conditions.

We define our bimetallic composite cylinder R:R1 x R2 to be the

union of two cylinders R1  and R2  such that

R1 : Or r , zi 4 w

R'2 : ro < r a , IzI< -

a > ro with interface r - r0 , which is assumed to be perfectly bonded.

The material properties of the two cylinders are assumed to be

R1  (U1,01) , R2 : (2,02)•

The shear stresses are given by

3ue

20 az

(6)

SrO r r ue)
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and therefore using Eq. (5) we find that

TZe "Ij9 [ -31 (Kr) - cBYi(Kr exp i(&z-wt)

(7)

Tre - A J2 (Kr) -- I K2By (Kr exp i(Ez-wt)

For a solid cylinder in region R1 , the boundary conditions as

r 0+ require that lu(1)(0+,z;t)l and IT(1)(0+,Z;t)I be bounded

and therefore suitable forms for displacement and shear stress are

u A1- 1 A 1Jl( 1 r) exp i(Cz-wt)

(8)

Tr) -2uzA 1J2 (Klr) exp i(4z-wt)

where

K = [(=/cl) 2 - C2112

(9)

For a hollow cylinder in region R2 , the suitable forms for dis-

placement and shear stress are

u(2) . 2 A2 J ( 2 r) -E K2 B2 Yl(K 2 r) exp i(&z-at)

(2) K 2 1 1
(10)

T (2) * JF2A(K r) -E K2 IcEY (K r)]exp i(&z-wt)
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where

I -[ )2 -E2(1/2

C2=
c2 - 2/P2•

Frequency Equation

For a bimetallic cylinder with generators parallel to the z-axis

the boundary, interface and boundedness conditions are

. (2) -0 3R2 : (r ia) x z,
re 9R2

-(1) I  -(2)
e R r6 BR

2. 1 2 R1

(1) (2) 3R : (rr o) xz , (12)

ea B 1R 2
u B)lR1  u lR2

3.lu)r 0+ < M , 1,(' r_0

We assume that R1  and R2  are perfectly bonded at their common

n (r - r )x z. We therefore assume that the ensuing

motion of the bimetallic cylinder will have a common frequency w/2W

and a common spatial period 2w/C in the axial direction. However,

the radial wave numbers K1 c R1  and K 2 e R2  will in general be

different. The two wave numbers K 1  and K2 are not independent and

b_ - - L _. .
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only those values are admissible for which the boundary and interface

conditions (12) are satisfied. We have one boundary condition (12) 1

and two continuity conditions (12)2. From Eqs. (8),(10) and (12) we

find that there are five unknowns A1,A2,B2 ;'1  and K2 * Since we

have only three homogeneous equations relating the five unknowns, it

follows that the two radial wave numbers K1  and K 2 are not indepen-

dent. For the three homogeneous equations to have a non-trivial solution,

the determinant of the coefficients A1A 2  and B2 must be zero. This

leads to the frequency equation

T12P2 - GY[J2 (y)/J 1 (y)](aQo+ 2So)- 0 (13)

where

c a 2  y E r ro K1 ,

T, ro0//a y li/P 2 , (14)

and

p2 2 4
= P + -LQ +-R

The functions P0 P2 ; Qo,Ro and So  are defined as

P n i n(Q)Yn( a) - Yn(a)Jn (na) , n - 0,2

% o'(n (a) - Jo'(nQ)Yo(Q) ,

R J J '(Q)Yo(na) - jo(nOL)Y'(1) , (15)

so J;(Q)Y(nv ) - Jo(n )Y'o;a) - P1



where primes indicates differentiation with respect to their respec-

tive arguments, e.g. [ 8].

When a is imaginary and y real, i.e., when a i ic and

y y , the frequency equation (13) takes the form

na2 p 2(a) - GYLJ2 (Y)/J 1 (y)](a~o(a) + 290(a)) = 0 , (16)

where now a and y are both real and

P2(a) E 12 (a)K2(na) - 12 (na)K 2 (a) ,

Q0 (a) 1 0I(a)K1(na) + II(na)K0 (a) ,

I'(na)K (a) - Io(a)K'(nt) , (17)o 0 0 0

S (a) 1 2 (na)Kl(a) - I 1 (a)Kl,(na)

I'(a)K'(r - I'(Tna)K'(a)
o0 0 0)

When both a and y are imaginary, i.e., a ia , y - iy the

frequency equation (13) takes the form

na2P2(a) + ay[I 2 (Y)/I 1 (y)](aO (a) + 2§O(a) = 0 , (18)

where a and y are both real in Eq. (18), In and Kn  are modifiednI
Bessel functions and other symbols are same as defined earlier.

The case of grazing incidence occurs when either y - 0 or when

a - 0 . When a 0 , the frequency equation takes the form

yJ2 (y) - 0 . (19)
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When y 0 the frequency equation takes the form

S2(a) - 0. (20)

Equation (20) has no real zeros except a 0, since

P2 (a) -1 2 (a)K 2 (na) - t 2 (ca)K 2 (a) ,2 2(aYno)- 12(21)

-. '2 cosh a(l-n)+ ... , a >> 1

which has no zeros. Hence the dispersion spectrum never intersects

the line y - 0 , but approaches it asymptotically from above. This

eliminates the existence of imaginary values of a and y in Eq. (13).

However, Eq. (19) admits simple zeros and therefore in the region

W/c 2 < < W/cl , y is real and a is imaginary.

The last case is when a is real and y is imaginary, i.e., when

a -o a and -y - ir . The frequency equation in this case takes the form

na2P2 (a) - 0([I 2 (Y)/Ii(y)](aQo(a) + 2So(a)) - 0 , (22)

where now a and y are both real, and other symbols are as defined

earlier. This equation replaces Eq. (16) when the wave speed in the

core is greater than that in the casing. Such a situation is certainly

possible, but is of less physical interest.



Analysis of Frequency Equation

The frequency equation (13) can be treated as a function of two

independent variables a and y and has an interesting property that

the equation is separable. It is easy to see that this equation can be

written in the form

YJ 2 (y)/J 1 (y) ' (23)

where

2P
() nap 2a)

C[aQo0 (a)+2So(c)]

Since

da

(24)*

d (Yj (Y)/j (y)) =0

it follows that there exists a separation constant Q such that

'(e)- Q = 0

(25)

YJ 2 (y) - QJl(Y) 0

where 0 < Q < - and can be considered as a continuous parameter e.g.

19,10].

* Note that this process of separation is capable of generalization.
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The second of Eq. (25) corresponds to the case of a solid cylin-

der with elastic boundary condition at r r 0

T(1)/u 
1) . -QUl/r " (26)

When Q - 0+ , we have the case of a traction-free solid cylinder and

Q + 4 corresponds to the case of a solid cylinder with rigid encastered

surface. The rigid boundary conditions slowly change to traction-free

boundary conditions as we gradually change the parameter Q from

to 0+

Similarly the first of Eq. (25) corresponds to the case of an

hollow cylinder with elastic boundary conditions

i) (2)/(2) -Q~z/r, (r= r) x z

(27)

ii) (2) - 0 (r a) x z.re

By varying Q from 0+ to -, the interface boundary condition at

r - r0  changes from traction-free to rigid condition. Thus when Q - 0,

we get from Eq. (25) 1

P2 (a) - 0 if a 0 , (28)

which is the frequency equation of a traction-free hollow cylinder.

When q t - , Eq. (25)1 gives us the frequency equation

aqo(a)+2S0(a) - 0 if a # 0 , (29)
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which is the frequency equation of a hollow cylinder with traction-

free external surface and rigid internal surface.

We therefore conclude that when Q 0+, the two frequency equa-

tions are

i) J2 (y)- 0 y 0

(30)

ii) P2 (c) a 0

and when Q t , the two frequency equations are

i) 1(Y) - 0,

(31)

ii) aQ0(a) + 2So(a) =0 if a y0.

It can be easily verified that these frequency equations have only simple

zeros. Furthermore, these are also the zeros of the general frequency

equation (13). In addition these simple zeros have the interesting

property that they do not depend upon the choice of the rigidity ratio a

Thus all of these roots of the frequency equation are invariant with

respect to the ratio of the rigidity modulii of the bimetallic cylinder.

Let y , p = 1,2,3,... and aq , q - 1,2,3,... be the roots

of the two frequency equations (30). Then using these values of a and

y , the spectral branches of the two frequency equations are given by
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(a/c2)2 Q2 + (at)22 q q

(32)

(a/c 2)2 q 2 1[(y p/n)2 + (at)2]

where p p1/p 2 . The points of intersection of these branches are

O(y /n~) 2 
-a

(at)2  -
pq p-a

(33)
,)w 2 O[(y P/n) 2 - a2 ]

pq
2 pq

From the earlier discussion it is obvious that these points of inter-

section are invariant points of the dispersion spectrum through which

the branche3 of the frequency equation (13) must pass. Furthermore,

these are the only points at which these branches can pass through

these Q 0+ and Q + - spectral branches which may then be thought

of as bounding curves.

For large values of the argument, frequency equations (30) have the

Hankel-type asymptotic form

i) tan(y-w/4) 8

(34)

ii) tana(l-n) - 1 -

8 ra

It is relatively easy to find the roots of these transcendental equa-

tions. These roots when used in Eq. (33) determine the invariant inter-

section points of the frequency equation (13) in the high frequency
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Now consider the remaining two frequency equations (31). For

large values of the argument, the Hankel-asymptotic forms for these

equations are

i) tan(y-w/4) + = 0

(35)

ii) tana(l-n) + 8n( 0
3(1-5n)

Let yn * n - 1,2,3,... and am , m - 1,2,3,... be the zeros of

these two frequency equations which for large values of yn and a

agree with the zeros of Eq. (31). Then in the high frequency region

the spectral branches of the two frequency equations (31) are given

by Eq. (32) if we replace yp by yn and aq by an . Under the

same transformation, the points of intersection of the branches are

given by Eq. (33). Again, these additional intersection points are

invariant points of the spectrum through which the branches of the

frequency equation (13) must pass.

Now Q is a continuous parameter and for various values of Q

one may easily find the roots of the frequency equation (25). Because

the frequency equations are entire functions, it is possible to

express a and y in terms of power series in Q and one can then

study the properties of the a and y trajectories with respect

to Q . However, such an analysis is not of much interest because

the roots a of Eq. (25)1 depend upon the choice of ratio a and the

intersection points of the a- and y- branches are not invariant
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points of the spectrum. With a view towards usefulness in the study of

Floquet waves in bimetallic cylinder with periodic structure, only

theme Invariant points merit special consideration. As such,no attempt

is made to study the properties in the neighborhood of the a-variant

intersection points for other values of parameter Q

A&J
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Long Wavelength Properties

With the invariant points at our disposal, the branches of the

spectrum pertaining to the frequency equation (13) can be qualitatively

traced if one has

a) the cut-off frequencies,

b) the slope of the branches at cut-off, and

c) the curvature of the branches at cut-off.

Supplementing this information with the properties at long wavelength

and low frequency; zeros in the zero-frequency plane; and the zeros at

grazing incidence, provides sufficient information to trace the branches

of the spectrum qualitatively. Additional information based on the theory

of differential equations reveals that the problem of coexistence does

not exist because all the roots are simple and furthermore, complex

roots are inadmissible. However, the lowest torsional mode is an exception.

i) Slope at cut-off

If we represent symbolically the frequency equation (13) by the

functional form F(m,y) - 0, then using the differentiation formulas of

implicit functions, we get

h. ._ Fa + FY &(36)
a Fa w + Fy W

where a c(w(O, ), y = y(w(E),t) and Fa Fy a ,...,y indicate par-

tial derivatives with respect to the variables a,y,,..., and w ,

respectively. Now
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a - a2tl

(37)

W -r-f

00
and In the limit as 0, a do 0 and yd 0o hreoei

follows that at cut-off frequencies, the slope of the branches is in

general zero, i.e.,

A0 0, (38)

except when the denominator (Fa + Fy) - 0. For non-zero values of

wave number the slope of the branches will vanish if

1 F n2 1 F39)
a ac Y a)y

In the region of long wavelength and low frequency, when both C and

w tend to zero, Eq. (36) takes an indeterminate form, since it can

be Tewitten as

N L yF a+ n2aF Y( 0
Z + nc2 aF w

This can be written as

32 yF Q+ nm
at Y F + n 2aF

which suggests that in the low frequency long wave length region, w2 is

linearly proportional to c 2 . To determine the slope of the branch in
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this region, when both w << I and < << 1 * we use power series

expansion of Bessel functions for fixed order and small values of the

argument. The frequency equation in this region takes the approximate

form

Onw 2 + (n-- 13)02 z 0

or equivalently

-2 1~+j i3On (41)

as conjectured earlier. From here we immediately conclude that the slope

of the lowest branch at long wave length and low frequency is given by

C 1 + o(p)n4 , R : (42)
2R -(l-p)n < 1

which agrees with the limiting value obtained by Reuter [5].

From Eq. (36) we also see that the slope is indeterminate when

Faa t+ F y - = 0

Fa + FYyW - F 0

Simultaneous solution of the three equations

F - 0, FC " 0 and F -0, (43)
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determine w , and o for which we have coalescence of spectral lines.

These are points of coincidence and as shown in Ref. 11] the slope at

these points is given by

P(#, 2 2FF ?W (44)
o +t WET + FEE ,

which gives us the value of slopes

R {F~ ±(-%2 F F )Y2} (45)

When F 0 , as in the present case, the slope of the branches at

points of coincidence takes the simple form

Fw (46)

In the present problm it can be verified that Eq. (43) has only one

non-trivial solution (w,0:(0,0) , which reveals that the origin in the

(wg)-plane is a zero of multiplicity 2 . In the 8-neighborhood of the

origin P. 2 2 , F = -C2[1 + (o-p) 4/[l - (l-p)n ]], and therefore from

Eq. (46) we get (aw/at)(0 ,0), which agrees with the result derived earlier

for the lowest branch. As remarked earlier, this multiplicity leads to

co-existence of two linearly independent eigenfunctions.

ii) Curvature at cut-off

At cut-off frequencies when the slope is zero, the curvature of

the branches is given by

a e (47)
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Now

i -ac2o /

~k4.o I1

a.1 a/c2

Y.1 +o "r./cl

and therefore the curvature of all those branches at cut-off, whose

slope is zero, is given by

32W ,  C2[ + f(c/c22/C1)"' X -_2. 1 2 2/F +c2 1  (48)

For high frequencies and long wavelengths, both a and y are

large. Using asymptotic expansion of Bessel functions of large argument

and fixed order, the frequency equation (13) takes the Hankel-asymptotic

form

nosina(l-n)(cosy-siny) + oycosa(l-n)(cosy + siny) - 0 (49)

From here one can easily show that

[1 (i-n){ o2Y2+ n2a 2)+(02Y2- n2a2)sin2y)-oTycos2y[F- naa(2y + cos2y)

and
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(1n =~_{(l+ap)+(l-ap)sin2y )+2y/-

+ ii a (2y 01i + cos2y0)

Therefore the curvature of the higher branches at cut-off is given by

c2 (o/p)/2(oap)(2y + cos2y)a 2 0)2
g 2 T IM .o w 2yo(up) /2 + (l-n) (ca) {( 1+ap) +(1_c) sin2y (50

W - 0 c 2W>>l

where Yo = n(p/o) (ai/c 2), and aw/c2  is a dimensionless frequency.

Now

(l+op)+(1-ap)sin2yo M (cosy0+siny 0)
2+ Gp(cosy 0-siny 0 )2

1

and is therefore a positive-definite quantity. Also, for y >- and
Yo>2

real, 2y0 + cos2y o = (2yo+l)cos
2 y0+ (2y -l)sin2y > 0 . Hence the

second term in the parentheses is positive if a > p and negative if

a < p . When a - p , the curvature is c2/W , which is the curvature

of the a-branch at cut-off frequency. Thus starting at cut-off fre-

quency with zero slope, the branch of the spectrum lies above (below) the

a-hyperbola, when a is greater (less) than p

iii) Cut-off frequencies

To sketch the higher branches qualitatively, it now remains to

determine the cut-off frequencies. At - 0 , these frequencies are

given by the higher roots of the frequency equation

tan(l-r), -(p)V2tanIn(p/o ) 1/2
- 14]-0 , (51)

where a = , aw/c, - a1I (a/0) 2y .
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Asymptotic Formula f or the Zeros of Frequency Equation when IQI -1,O

The zeros of the frequency equation (30) when Q - 0 are well tab-

ulated and their asymptotic form can also be found in [ 8]. Also, one

can find the zeros of J 1(y) -0 , well tabulated. However asymptotic

formulas for the zeros of frequency equation (31) 2 are not available and

in this section we obtain their McMahon-asymptotic representation [12].

Consider the equation

aQ 0(a) + 2S 0(a) 0, (52)

where

Qoc)-J 1(000YO(a) - jo(a)Y1 (na)

S0( a) -Y 1 na)Jp1 a) - Y I )J 1 0(0

and n _ r /a < 1 . Using Rankel-asymptotic expansion of cylinder func-

tions for fixed order and large arguments, it can be shown that Eq. (52)

can be written as

cosE(l-n~a + e3 - 0 ,(53)

where

COSO ~ + 158 a) (1 + 6n~ - 7n2) +*.

(54)

sine 5n~ (S-1) + 5() (7 + 15n~ + 21n 2 + 21n3) +
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The zeros of Eq. (53) are given by

(1-n)zn = $n- 6, (55)

where

n  2(2n-l) -, n = 1,2,3,... (56)

and 0 is the solution of

tane , 8i[ 51n-1) + (85)2 (5 + 9n - 45n2 + 63n3) + ...].(57)

When a >> 1, it follows that tan6 << 1 and therefore we can write

6- tanO -- itan3e +! tan5e - ... (58)
3 5

From Eqs. (57) and (58) we therefore get

8 -- 3 (5n-1) + 12 (7 - 15n3) + .... (59)
8?1a(8ncx)3

From Eqs. (55) and (59) it now follows that for large values of a, the

asymptotic value of the roots is governed by the algebraic equation

a - y + p/a + q/a3 + ... , (60)

where
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p 3(1-5ni) (61)

1 2(l5q3-7)

Using Lagrange's expansion theorem, the roots of the algebraic equation

(60) are

c y + ply + (q-p2)/.y3+ . .(62)

Hence f or large values of a , the asymptotic formula for the zeros of

the frequency equation (52) have the explicit representation

a + 3_1_5n)_- 12(7-ri-60ri2+ 135n 3+ 15n4) + 1/y) (3
an ~ n + IY n(l-n) (8rny n)3(1-n)2  n~/),(3

where

(2n-1) r 64Tn (-) 2 (4
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Inadmissibility of Complex Wave number

In this section we show that in the case of a bimetallic rod, the

wa'e number E can be real or imaginary, but cannot be complex. This

easily follows by using the theory of singular Sturm-Liouville eigen-

value problems [4 .

Consider Eq. (3) which can be written in the self-adjoint form

Lu + K2ru - , r c R : R1 X R2, K2  0 (65)

where
L dj (rd

and r - 0 is a singular point. The domain of the operator L is

the class of C2(l) functions which satisfy the boundary and continuity

conditions (12).

Let u1(r) and u2(r) be two complex-valued functions which

satisfy the equations

Lu1 + K
2ru M 0 R 0 < r < r

(66)

Lu2 + K2ru a0 R2  < r < a2 2 u2  2 00 :r

where K1  and K2  are assumed to be complex wave numbers. The associ-

ated eigenfunctions u1  and u2  are assumed to be complex and there-

fore we choose
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U1 0 v + iv1 ,

U 2  a v 2 + iw2

K MT 11+ iv 1

K 2  ' n2 +iv 2 ,(67)

12 (n2- V2) + 2i1 vl

K2 (n2_ V2) + 21n v2

Substituting into Eq. (66) and equating real and fiaginary parts, we

get the four equations

Lv + (n2 - v2)rv 2n 2 w

0

Lw + (n2-. v2r + =nvr, 0;

(68)

Lv + (ni2- V2)rv - 20
2 2 2 2 " 2 v2 r' 2 -

r <r a
0

Lw2 + (n2_ V2)rw2 + 2 ivrv2 ='0

From these equations we easily get the relation

-~ -wvl + 2vr(v2 + W 2) 0 0 < r <r
11 111111 0

(69)

v Lw - v Lv + 2n r(v + W ) =0 * r0 < r < a

We first remark that the operator L is singular at r -0 *Therefore

we consider the improper integral
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r a

2rV jo(V2 + w )rdr + 2viv (V2 + v22)rdr
lie~* C- £

l* 5o 70

j(wlLVl _ vLWl)dr + (w2Lv2 _ v2Lw2)dr

F ivir0 + [rWlw 2 ,v2 ] , (70)

Iim - o r

where W[w,v] - (wv' - vw') . First r -* 0 as e * 0 ; secondly the

self-adjoint operator L is symmetric and therefore the conjunct of the

operator is zero at the boundaries. Hence we get the equation

r a

,v J(V2 + w2-)rdr + n 2v2  (V2 + w2-)rdr - 0 .(71)

o r
o

Let K1  and K2 be the wave numbers defined by Eqs. (9) and

(11). Assuming 1 1 + g 2  in these equations, we get

K2 nW 2/c2 -2 . (W2/C2 - C2+ E2) -21
1 1 1 1 212

(72)

K 2 aW 2/c2 & 2 _(w 2 /c2 _ 2 + C2) - 21& &2 2 2 1 2 1 2

and therefore comparing with Eq. (67) we find that

nl1l ' 12'2 Y2 (73)
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Equation (71) therefore takes the form

(V22{ v+ w2)rdr + J V v+ w22)rdr~m 0 (74)
0 r

0

We first assume that the quantity inside the braces is non-zero. Then

Eq. (74) will be satisfied if either &1 M 0 or C2 - 0 . This says

that real and imaginary wave numbers & are admissible. Now let C

be complex so that &1 and E2 are both non-zero. Then for the equa-

tion to hold the quantity within the braces must be zero. Since each of

the integrand is positive-definite, it follows that u1 - (v,w5 ) 0,

and u2 - (v2,w2) S 0 . This implies that for complex values of I

the functions u1(r) and u2 (r) are identically zero, and therefore

complex & is inadmissible. We therefore conclude that frequency equa-

tion (13) does not admit complex wave number & , but can be real or

imaginary.

Coincidence of Frequencies

It is easy to demonstrate that for each frequency w > 0 there

exists only one linearly independent eigenfunction, and therefore all

roots of the frequency equation are simple and coincidence cannot take

place. Suppose that for a given frequency, Eq. (66) has two linearly

independent eigenfunctions fi and f2 " If we compute the conjunct

of the operator and use the boundary conditions to evaluate it we find

that the conjunct vanishes. However, in this case the conjunct is the

Wronskian and vanishing of the Wronskian implies that the two solutions

cannot be linearly independent as assumed. Hence all the roots of the

frequency equation for w > 0 are simple and coincidence of frequencies
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cannot occur, because our problem is of Sturm-Liouville type [13].

On the other hand K - 0 when w - E - 0 , and the equation

degenerates to an Euler's equation. The conjunct of the operator is

(d/dK)W- =1 9<2]aR '- 1l'2> , and hence non-zero. We thus have
liIq C +0 K 

-
a &oblem of co-existence when w = * 0 . In the theory of spectral

rep tesentation this knowledge is of fundamental importance.

Velocity of Energy Flow

In an open connected domain R , the stress equation of motion,

corresponding to displacement equation (1), can be written as

Sr. 2 a8 ez a2u R:RlxR (75)
ar + re +O a- 57" 2

where in terms of the physical components

T 11 RLU -( u 2 e

Trea 9 re wi

(76)

ze 1 3 T ze

The. total energy is

Sf ar dr da, (77)

where the scalar energy density is

• r re + se 23e) + (78)

which is the sum of the potential and kinetic energy densities.
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The time rate of change of energy density can be easily obtained

by differentiating the energy density e with respect to the time

parameter t . When the shear stresses satisfy the equation of motion

(75), the rate of change of energy density is given by

Te - (ir r ) + - (=rr 0 . (79)
a rr rO az ze'j

Relating the physical components to tensor components, we now define

re a i ,

r e  ;12 (80)

urr -32rT ze 2i32

where u2  is the covariant component of displacement, jK2 are the

contravarient components of stress tensor density of weight +1 , and

i is the scalar energy density of weight +1 . The equation of con-

tinuity of energy and its flow now takes a familiar covariant form

ai K2
t - a 0(u -0, 0K - ,3 (81)

where we have used the standard summation convention, identified the

coordinates r,e,z with the indices 1,2,3 respectively, and aK

represents the partial derivative with respect to the K-th coordinate,

[14]. On comparing this equation with the flow of matter in fluid, we
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easily infer that the mean velocity of energy flow is given by

t

f dt 2i k2dd

(t R :R 1 x R2  (82)

dt Zed, 5

0 R

where C K is the K-th component of group velocity.
(e)

Details of the Dispersion Spectrum

As pointed out earlier, the sketching of the spectrum is considerably

simplified by the presence of bounding curves corresponding to the value

of parameter Q - 0+ and Q * - . The spectral lines must pass through

the intersection points corresponding to the family of bounds Q * 0+ ,

and the family for Q + - , separately, because the solution common to the

two problems is also a solution to the original problem. In addition, the

spectral lines cannot cross these bounds because such solutions do not

satisfy Eq. (13).

For convenience of drawing the spectrum we introduce non-dimensional

frequency 0 and non-dimensional wave number A , where

- XI , - (a-ro)./W , (83)

and we - c 2 /(a-r o) , is the lowest thickness-shear frequency of an infinite
plate of thickness (a-r ) , [9]. In terms of non-dimensional variables

the bounding curves for Q * 0+ are
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n2 _ [(.1-n)/.]r) 2 q , q 0,1,2,...
q

(84)

02/c 2 - X2 .[(1-n)/rri] 2  , p - ol,,2...
R p

where c2 c2 /C2  a/p . The coordinates of the intersection points are
R 1 2

X2 (f)(C2 Y2 - ZQ/l_2
pq in- Rp q R

(85)

- (k)(y2 - n2 a2 )C2 I(1-c2
pq n'n" p qR

For the second set of bounding curves corresponding to Q + = , and the

coordinates of the intersection points, we replace y p, aq by ym' an in

the above formulas. The values of yp, a and y, a for Q - 0+ and

Q t - , are the simple zeros of Eqs. (30) and (31), respectively.

In the (Q,A)-plane, the straight lines a - X for a - 0 , and

- c R for y - 0 , are the asymptotes to the bounding curves. These

asymptotic lines divide the real plane in three regions, i) S 2 I ,

ii) A < C _. XcR , and iii) AcR < a :s 0 , where we have assumed that

cR < 1 . In the first region a and y are both real; in the second

region a is pure imaginary and y is real; and finally in the third

region, a and y are both pure imaginary. However, as shown earlier, no

roots exist in the third region. The asymptotic line 9 - X intersect

the bounds Q * 0+ and Q t , and their coordinates of intersection

are given by Eq. (85) if we set a° - 0 in these equations. The cut-off

frequencies 0 are the roots of transcendental equation (13), if in
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this equation we set a - wn/(l-n) , and y = n/[((-n)cR] . In the high

frequency region this equation takes the simpler form of Eq. (51).

The dispersion spectrum can now be calculated using the above

inf~rmation as guide. For real a and y , Eq. (13) must hold. Choosing

appropriate starting values and increments for a , the corresponding y's

may'be found by numerical iteration. Each y can be identified to the mode

it represents by means of the bounds on a and y . Once a and y are

known, the corresponding values of Q and X are given by

n2 . 1l) 2 [ /)2 - c2]/(l/c2-l)
Yp /n q R

(86)

X2  2[(Cy/ri)2 - ca2]/(l/c, - 1)

As soon as the asymptotic line n X is crossed, a becomes imag-

inary, y remains real, and now Eq. (16) must be satisfied. Once a and

y are determined from this equation, the coordinates n and A can be

dettruined from Eq. (86), if in this equation we replace a by ia . As

menjioned earlier, when cR < 1 , there are no roots of Eq. (18), when both

a tand y are imaginary. Hence the spectral lines never intersect the

asymptotic line n - AcR , but approach it asymptotically from above.

Aftdr the solution for real A has been carried out, the procedure is

repeated for imaginary values of A . The bounding curves are now circles

and ellipses, rather than hyperbolas as was the case for real A . The

computational procedure is the same as for real A , except that we

replace A by iA in all relevant formulas.
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Figures (1,2) illustrate a typical set of dispersion curves for

n I-/3, a - 1 and cR - I4, first in the (a,y)-space and then in the

more familiar (Q,X)-space. The subscripts 1,2 on a and y indicate

the bounding curves corresponding to Q + - and Q - 0+, respectively.

The integer inside the brackets indicates the 'mode' or value of

p,q,m or n, for example a2 (3) aq=3 , Y 1  = n-l etc.

-0-
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Figure Captions

Fit. 1 Dispersion Spectrum in (a ,y ) space with Bounds and

Cutoff Frequencies.

Fi$. 2 Dispersion Spectrum in (A , ) space for Real and A =

Imaginary X with Bounds and Asymptotes.
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